Abstract
Graphitic carbon nitride (CN) was a promising candidate for efficient environmental remediation in the advanced oxidation processes (AOPs). However, whether CN itself had some potential environmental risks, such as affecting the production of disinfection byproducts (DBPs) was still unknown. This study investigated the formation potential of DBPs in the presence of CN. The experimental data revealed that CN had a high potential to form DBPs, and dichloroacetonitrile (DCAN) was the most produced species during the chlorination and chloramination processes. Moreover, the effects of chlorine time, chlorine dosage, pH, and CN dosage during the chlorination process were evaluated to understand the formation pattern of DBPs. The possible mechanism of DBPs formation was deduced by analyzing the results of FTIR, Raman, and XPS before and after chlorination. Finally, the DBPs formation potential and cytotoxicity of the CN leaching solution were investigated, indicating CN could leach the precursors of DBPs and that the potential toxicity of the leaching solution increased with the extension of CN immersion time. In general, this research adds an understanding of the DBP formation of CN in water treatment systems and sheds light on CN's environmental potential risks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.