Abstract

Graphene has shown great potential for improving growth of many plants, but its effect on woody plants remains essentially unstudied. In this work, Pinus tabuliformis Carr. bare-rooted seedlings grown outdoors in pots were irrigated with a graphene solution over a concentration range of 0–50 mg/L for six months. Graphene was found to stimulate root growth, with a maximal effect at 25 mg/L. We then investigated root microstructure and carried out transcript profiling of root materials treated with 0 and 25 mg/L graphene. Graphene treatment resulted in plasma-wall separation and destruction of membrane integrity in root cells. More than 50 thousand of differentially expressed genes (DEGs) were obtained by RNA sequencing, among which 6477 could be annotated using other plant databases. The GO enrichment analysis and KEGG pathway analysis of the annotated DEGs indicated that abiotic stress responses, which resemble salt stress, were induced by graphene treatment in roots, while responses to biotic stimuli were inhibited. Numerous metabolic processes and hormone signal transduction pathways were altered by the treatment. The growth promotion effects of graphene may be mediated by encouraging proline synthesis, and suppression of the expression of the auxin response gene SMALL AUXIN UP-REGULATED RNA 41 (SAUR41), PYL genes which encode ABA receptors, and GSK3 homologs.

Highlights

  • Graphene is an important carbon nanomaterial with unique physical and chemical properties, such as a colossal surface area, robust thermal and electrical conductivity, and good mechanical strength, which make it a chosen material for nanoelectronics [1], biomedicine [2], mechanical engineering [3], and environmental governance [4]

  • Scanning electron microscopy was used to determine the morphological characteristics of the graphene used in this study

  • D band (~ 1,343 cm−1) and G band (~ 1,559 cm−1), the two main representative Raman peaks of graphene were clearly evident, and the ratio of D band to G band intensity (ID/ IG) was about 0.76. These results indicate that the graphene used for this study is of high quality

Read more

Summary

Introduction

Graphene is an important carbon nanomaterial with unique physical and chemical properties, such as a colossal surface area, robust thermal and electrical conductivity, and good mechanical strength, which make it a chosen material for nanoelectronics [1], biomedicine [2], mechanical engineering [3], and environmental governance [4]. It is estimated that at least 1.3 billion dollars will be injected to develop new applications for graphene from 2014 to 2024 [5]. Effects of graphene on Pinus tabuliformis Carr. Technology Achievements Transformation Guide project of Shanxi province (201804D131041), Natural Science Foundation of Shanxi Province (201901D211437) and The National Natural Science Foundation of China, (52071192)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.