Abstract

Granulocyte-macrophage CSF (GM-CSF) primes granulocytes for leukotriene (LT) synthesis. Here, we examined the effects of GM-CSF on arachidonic acid (AA) metabolism in rat alveolar macrophages (AM), peritoneal macrophages, and human peripheral blood monocytes. Pretreatment of AMs with GM-CSF for 24 h significantly increased the synthesis of immunoreactive LTB4 upon subsequent stimulation with calcium ionophore. Enhanced LT synthesis required a minimum of 6 h of GM-CSF pretreatment, suggesting that protein synthesis was required for enhanced LT production; indeed, cycloheximide completely abolished the GM-CSF effect on LT synthesis. HPLC analysis confirmed that GM-CSF primed AMs for enhanced generation of LTB4, as well as the 5-lipoxygenase products LTC, and 5-HETE. Moreover, parallel increases in other AA metabolites and free AA were observed following GM-CSF pretreatment. The enhanced production of all AA metabolites indicated that GM-CSF up-regulated AA release. Consistent with this, whole cell lysates from GM-CSF-treated AMs demonstrated increased phospholipase A2 (PLA2) activity. The increased activity was resistant to DTT, indicating the involvement of a PLA2 other than the 14-kDa PLA2s. By immunoblot analysis, GM-CSF treatment caused an increase in the 85-kDa PLA2 protein comparable to the observed increase in PLA2 activity. Unlike AMs, neither peritoneal macrophages nor peripheral blood monocytes showed increased eicosanoid generation or increased expression of the 85-kDa PLA2 protein following GM-CSF pretreatment. These results indicate that GM-CSF increases the capacity of AMs, but not peritoneal macrophages or peripheral blood monocytes, to generate eicosanoids. This effect results from increased PLA2 activity, due at least in part to increased levels of the 85-kDa PLA2 protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.