Abstract
Murine alveolar macrophages (AM) were shown to have proliferative ability and to form colonies in vitro. The factors in lung-conditioned medium (CM) and L929-CM which stimulate the proliferation of AM were considered to be granulocyte-macrophage colony-stimulating factor (GM-CSF) and CSF-1, respectively, because recombinant murine (rm)GM-CSF and recombinant human (rh)CSF-1 could replace the activities of lung-CM and L929-CM, respectively. The phenotype of the cells in the colonies formed by AM incubated with rmGM-CSF or lung-CM was AM-like; more than 90% of the cells were stained by anti-asialo GM1 but not by FITC-LPS, and had AM-like morphology. Expression of Mac-1 Ag determined by M1/70HL in these cells as well as original AM was low. However, the phenotype of the cells in the colonies formed by AM incubated with rhCSF-1 or L929-CM was peritoneal macrophage (PM)-like; more than 90% of the cells were stained by FITC-LPS and M1/70HL, but not by anti-asialo GM1, and showed PM-like morphology. The cells in the colonies formed by AM incubated with rmGMCSF changed their phenotype after treatment with rhCSF-1; the percentage of cells stained by anti-asialo GM1 decreased, and that of cells stained by FITC-LPS increased. The cells in the colonies formed by AM incubated with rhCSF-1 never changed their phenotype after incubation with rmGM-CSF. In contrast to AM, more than 90% of the cells in all colonies formed by PM incubated with either rmGM-CSF, rhCSF-1, lung-CM, or L929-CM were stained by FITC-LPS but not by anti-asialo GM1. These results show that although AM and PM can proliferate, AM, in contrast to PM, are bipotential cells that can differentiate into two types of macrophages responding to distinct types of CSF, and that one of the molecular mechanisms controlling macrophage heterogeneity may be based on the type of CSF produced at distinct tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.