Abstract
Over the last decade, developments of fine grained materials and investigations of the effects of grain size on mechanical processing at the micro scale have been reported. There are several papers and reports on the function improvements achieved due to enhanced edge quality. However, it is difficult to identify the studies about the effects of grain size on the processed surface in laser processing because ultrafine grain materials were not supplied in the market. In this study, the effect of grain size on the depth of groove by laser processing is investigated. Microgrooves are produced using a picosecond laser machine. The grooves are observed with a non-contact 3D measuring machine, and the depth and surface conditions are determined. There are obvious differences on the depth between the different grain sizes. Specimens were cut to allow the observation of the phase transformation of grains in the cross section using scanning electron microscope (SEM) and electron back scatter diffraction (EBSD). There are several obstacles when producing deeper grooves. As a result, smaller grained stainless steels are suitable for producing microparts by microlaser cutting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.