Abstract
In the paper, we propose a new nucleation rate function, which combines grain size, and models for nucleation and growth of voids in a ductile polycrystalline metal. The proposed model is used to analyse the effects of grain size on the dynamic tensile damage of high purity Cu samples with different grain sizes. Numerical results show that pull-back minima and void number decrease with grain size increasing, slope after pull-back and average void diameter increase with grain size increasing. The computed results are in qualitative agreement with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Acta Physica Sinica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.