Abstract
This study aims to develop an ultrasonically assisted grinding technology for precision internal grinding of a small hole measuring several millimeters in diameter, such as those formed in a fuel injector for an automotive engine. In a previous work, an experimental apparatus mainly composed of an ultrasonic vibration spindle was designed and constructed, and grinding experiments were carried out. The purpose of this paper is to examine the effect of ultrasonic vibration on grinding force and surface roughness when the grain size and concentration of small cBN grinding wheel are changed. The experimental results indicate that applying ultrasonic vibration to the wheel decreases the normal and tangential grinding forces by more than 50% and 78%, respectively, and improves the surface roughness by as much as 10% when the wheel grain size and concentration are changed. In addition, over the range of grinding conditions employed in this paper, the grain size as small as 5μm can be used in ultrasonically assisted grinding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.