Abstract

The Mg-12Gd-2Er-0.4Zr (GE122K) is fabricated by double extrusion, and the effects of grain refinement and precipitate evolution on the mechanical performance of the extruded alloys are deeply analyzed. Scanning electron microscope results spectacle that some bulky precipitates in the single extruded alloy are fragmented to fine precipitates during double extrusion and distribute linearly along the extrusion direction (ED). The fine precipitates exhibit the strongest dispersion strengthening effect, whereas the bulky precipitates act as crack resources and decrease the elongation. After double extrusion, a refined grain structure with an average grain size of 2.7 µm is achieved, which is attributed to dynamic recrystallization (DRX). Moreover, double extrusion boosts the content of rare-earth elements into the matrix by dissolving the fine precipitates. During aging, extensive β′ precipitates form in the double extruded alloy than in the single extrude alloy. As a result, refined grains and strong precipitation strengthening make a significant contribution to a high yield strength (YS) of 422 ± 1.59 MPa with an elongation (EL) of 6.5 ± 0.89% in the double extruded+peak-aged alloy (ACX2). The possible strengthening mechanisms are discussed, and it is found that grain refinement and precipitate strengthening are the main contributors to the high strength of the GE122K alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.