Abstract

As recombination centers of vacancies (Vs) and self-interstitial atoms (SIAs), firstly grain boundaries (GBs) should have strong capability of trapping point defects. In this study, abilities to trap Vs and SIAs of eight symmetric tilt GBs in tungsten are investigated through first-principles calculations. On the one hand, vacancy formation energyrapidly increases then slowly decreases as the hard-sphere radius r0of the vacancy increases. The value ofis the largest when r0is about 1.38 Å, which is half the distance between the nearest atoms in equilibrium single crystal tungsten. That is, any denser or looser atomic configuration around GBs than that in bulk is helpful to form a vacancy. On the other hand, SIA formation energyat GBs decreases monotonically with increasing the hard-sphere radius of the interstitial sites, which indicates that GBs with larger interstitial sites have stronger ability to trap SIAs. Based on the data obtained for GBs investigated in this study, it is found that the ability to trap Vs increases as the GB energy increases, and the capability of trapping SIAs linearly increases as the excess volume of GB increases. Due to its lowest GB energy and smallest excess volume among all GBs studied, twin GB ∑3(110)[111] has the weakest capability to trap both Vs and SIAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.