Abstract

For the development of healthier meat products, the grafted myofibrillar protein was evaluated as an ingredient that can substitute phosphate in brined loin. Individual brine solutions, consisting of salt (negative control, NP), salt + sodium tripolyphosphate (positive control, PC), salt + myofibrillar protein without grafting (MP), salt + myofibrillar protein grafted at high concentration (GMP-H), and salt + myofibrillar protein grafted at low concentration (GMP-L), were added to the pork loin by 40% of their weight. Differential scanning calorimetry demonstrated that MP and GMP-H lowered the thermal energy for the transition of myosin and actin, thereby improving the thermal stability of pork loin and increasing protein solubility. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that thicker protein bands appeared in MP and GMP-H samples while exhibiting increased pH values, moisture content, water holding capacity, and processing yield. Accordingly, the shear force of MP and GMP-H decreased. Lipid oxidation of pork loin was increased in MP, whereas it decreased in GMP-H. Thus, GMP-L is a potential substitute for phosphate since it improves physicochemical properties and prevents the lipid oxidation of pork loin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call