Abstract
The effects of gold nanoparticles deposited on titanium dioxide on the photocatalytic oxidative degradation of two organic substrates, i.e. formic acid and the azo dye Acid Red 1, and on the parallel O(2) reduction yielding hydrogen peroxide have been investigated under visible light irradiation. The method employed to reduce Au(iii) to metallic gold in the preparation of Au/TiO(2) photocatalysts was found to affect their photoactivity, also by modifying the properties of TiO(2). The presence of gold on TiO(2) facilitates both the electron transfer to O(2) and the mineralization of formic acid, which mainly proceeds through direct interaction with photoproduced valence band holes. The so-formed highly reductant CO(2)*(-) intermediate species may contribute in maintaining gold in metallic form. The controversial results obtained in the photocatalytic degradation of the dye were rationalised by taking into account that with this substrate, which mainly undergoes oxidation through a hydroxyl radical mediated mechanism, the photogenerated holes may partly oxidise gold nanoparticles, which consequently act as recombination centres of photoproduced charge carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.