Abstract
Transgenic soybean is the most widely grown genetically modified crop in the world, with herbicide resistance being the major modified trait. Microbial community is one of the most important indicators for soil quality. The effects of glyphosate-resistant transgenic soybean and glyphosate application on rhizospheric bacteria and rhizobia still remained unknown. In this study, with the non-transgenic parent Zhongdou 32 as control (CK), we investigated the effects of the G10-epsps transgenic glyphosate-resistance soybean SHZD32-01 without or with glyphosate application (abbreviated as GR and GR+G, respectively) on rhizospheric bacteria and rhizobia at different growth stages of soybean in field. Compared with CK, GR and GR+G had effects on soil pH, total organic carbon, total nitrogen and ammonium contents at the seedling and mature stages. GR significantly increased the abundance and diversity of soil rhizospheric bacterial community at the podding stage. GR+G significantly increased the abundance of soil rhizospheric bacterial community at the podding stage but decreased its diversity at the seeding and podding stages. GR and GR+G changed the relative abundance of dominant bacteria populations. Proteobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Actinobacteria were generally the dominant ones among the three treatments across all growth stages. Furthermore, GR and GR+G changed the relative abundance of rhizobia but did not change that of soybean-nodulating rhizobia, Bradyrhizobium and Sinorhizobium. The relative abundance of rhizobia in GR+G was decreased significantly at the podding stage. The abundance of actinobacteria and rhizobia was mainly affected by soil pH. Glyphosate-resistant transgenic soybean without or with glyphosate application altered soil rhizospheric bacteria and rhizobia at the podding stage, but the effects disappeared along with the growth of soybean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Ying yong sheng tai xue bao = The journal of applied ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.