Abstract
Severe hypoglycemia occurs in intensively treated patients with type 1 diabetes mellitus (T1DM) due in part to deficient epinephrine counterregulatory responses. Previously, we have found that T1DM patients demonstrated a spectrum of altered responses to epinephrine at a variety of target organs compared with nondiabetic healthy subjects. What is not known is whether intensive glycemic control further modifies target organ responses in individuals with T1DM. Therefore, the aim of this study is to assess whether there is tissue specific (liver, muscle, adipose tissue, pancreas and cardiovascular) resistance to epinephrine in intensively controlled (IC) T1DM compared with those with conventional control (CC). Eight IC patients (age 33 +/- 4 yr, BMI 24 +/- 2 kg/m2, Hb A1C 6.7 +/- 0.1%), and 11 CC patients (age 35 +/- 3 yr, BMI 25 +/- 1 kg/m2, Hb A1C 9.6 +/- 0.1%) underwent two separate randomized, single-blind, 2-h hyperinsulinemic euglycemic clamp studies with (EPI) and without (NO EPI) epinephrine infusion. Epinephrine levels during EPI were similar in all groups (5,197 +/- 344 pmol/l). Glucose (5.3 +/- 0.1 mmol/l) and insulin levels (515 +/- 44 pmol/l) were similar in all groups during the glucose clamps. Endogenous glucose production (EGP) and glucose uptake (R(d)) were determined using [3-H3]glucose. Muscle biopsy was performed at the end of each study. IC had a significantly reduced EGP and R(d) responses to EPI compared with CC. Glucagon responses to EPI were similarly blunted in both IC and CC. Free fatty acid and glycerol response to EPI was greater in CC compared with IC. There was a significantly greater systolic blood pressure response to EPI in CC. We conclude that, despite similar epinephrine, insulin, and glucose levels, intensively treated T1DM patients had reduced cardiovascular, skeletal muscle, hepatic, and adipose target organ responses to EPI compared with conventionally treated T1DM patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.