Abstract

Human γd-crystallin (Hγd-crystallin), a major protein component of the human eye lens, is associated with the development of juvenile- and mature-onset cataracts. Evidence suggests that nonenzymatic protein glycation plays an important role in the aetiology of cataract and diabetic sequelae. This research compared the effects of various glycation modifiers on Hγd-crystallin aggregation, by treating samples of Hγd-crystallin with ribose, galactose, or methylglyoxal using several biophysical techniques. To measure advanced glycation end products, an Nε-(carboxyethyl)lysine enzyme-linked immunosorbent assay was performed on the glycating agent-treated Hγd-crystallin samples. Fructosamine production detection was performed for both ribose-treated and galactose-treated samples. Methylglyoxal-treated samples had the highest level of aggregation and the greatest extent of unfolding, and upon incubation for a minimum of 12 days, exhibited a marked enhancement in the amount of Nε-(carboxyethyl)lysine. The molecular profiles and morphological features of the glycated samples were highly correlated to the type of glycation agent used. These findings highlight a close connection between the type of glycation modifier and the various aggregation species that form. Thus, these results may facilitate deciphering of the molecular mechanism of diabetic cataractogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call