Abstract

IntroductionAlthough glutamine (Gln) is mitogenic in various cell types, little is known about its role in human dental pulp cells (HDPCs). This study investigated the effects of Gln on proliferation, migration, and odontoblastic differentiation of HDPCs and the underlying signal pathway mechanisms. MethodsGrowth and migration were assessed by cell counting and colorimetric cell migration kits. Differentiation was measured as alkaline phosphatase activity, calcified nodule formation by alizarin red staining, and marker mRNA expression by reverse transcriptase–polymerase chain reaction (RT-PCR). Chemokine expression was also evaluated by RT-PCR. Signal transduction pathways were examined by RT-PCR and Western blot analysis. ResultsGln dose-dependently increased proliferation, migration, alkaline phosphatase activity, mineralized nodule formation, and odontoblast-marker mRNA of HDPCs. Gln also up-regulated expression of interleukin-6, interleukin-8, MCP-1, MIP-3α, CCL2, CCL20, and CXCL1. Gln increased BMP-2 and BMP-4 mRNA, phosphorylation of Smad 1/5/8, β-catenin, and key proteins of the Wnt signaling pathway. Furthermore, Gln resulted in up-regulation of extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase. In addition, noggin, DKK1, inhibitors of p38, ERK, and JNK significantly attenuatted Gln-induced growth, migration, and odontoblastic differentiation. ConclusionsCollectively, this study demonstrated that Gln promoted growth, migration, and differentiation in HDPCs through the BMP-2, Wnt, and MAPK pathways, leading to improved pulp repair and regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.