Abstract

Regenerated cellulose fiber (RCF) is an environmentally friendly material with outstanding mechanical properties and recyclability, which has been used in a large number of applications. However, during the spinning process using ionic liquids (ILs) as solvents, the dissolved cellulose continues to degrade and even produces degradation products such as glucose, which can enter the recycled solvent and coagulation bath. The presence of glucose can seriously affect the performance of the produced RCFs and hinder their applications, so it has become critical to clarify the regulation and mechanism of this process. In this study, 1-ethyl-3-methylimidazolium diethyl phosphate ([Emim]DEP) with different glucose contents was selected to dissolve wood pulp cellulose (WPC) and obtained RCFs in different coagulation baths. The effect of glucose content in spinning solution on fiber spinnability was investigated by rheological analysis, and the influence of coagulation bath composition and glucose content on the morphological characteristics and mechanical properties of the RCFs was also studied in depth. The results indicated that the morphology, crystallinity, and orientation factor of RCFs were influenced by the presence of glucose in the spinning solution or coagulation bath, resulting in corresponding changes in mechanical properties, which can provide practical reference and guidance for the industrial production of new type fiber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call