Abstract

Effects of glucocorticoids (GCs) on maze-learning performances and hippocampal morphology were observed in male C57BL/6Cr mice. Correlations between aging, GCs and maze-learning performances were also studied. (2) Eight-arm radial maze was used in maze-learning tests. Learning performance was assessed by the parameters of time of getting all the bait, number of reentry errors into the already-entered arm with bait, and number of missed entries into an unbaited arm. Brain sections, 8 mum thick, were Nissl-stained with cresyl violet or stained immunocytochemically with antibodies against neurofilaments. (3) With aging, normal pyramidal cells decreased gradually in amount, and degenerating cells increased since the age of 18 months, accompanied with the maze-learning deficit. Here we have suggested that these changes were associated with the age-related deficits in adaptation tolerance of neurons to stress. In addition, the age-related deficits in plasticity of hippocampal neurons to GCs in young mice (3 months of age) resulted in an increase in plasma corticosterone (CORT) concentrations, degeneration of hippocampal pyramidal cells, as well as maze-learning deficits. (4) In conclusion, our data indicated that CORT caused the degeneration of hippocampal pyramidal cells and the impairment of memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.