Abstract

BackgroundAcute stress leads to a rapid release of noradrenaline and glucocorticoids, which in turn influence cognitive functions such as spatial learning and memory. However, few studies have investigated noradrenergic and glucocorticoid effects on spatial learning and memory in humans. Therefore, we examined the separate and combined effects of noradrenergic and glucocorticoid stimulation on spatial learning and memory. MethodsOne hundred and four healthy men (mean age = 24.1 years ±SD 3.5) underwent the virtual Morris Water Maze (vMWM) task to test spatial learning and spatial memory retrieval after receiving either 10 mg hydrocortisone or 10 mg yohimbine (an alpha 2-adrenergic receptor antagonist that increases noradrenergic activity), 10 mg hydrocortisone and 10 mg yohimbine combined, or placebo. The vMWM task took place 90 min after yohimbine was administered and 75 min after hydrocortisone was administered. Placebo was given at the same times. Salivary cortisol and alpha amylase levels were measured to check pharmacological stimulation. ResultsHydrocortisone and yohimbine increased salivary cortisol and alpha amylase levels. Participants’ task performance improved over time, suggesting successful spatial learning. However, separate and combined noradrenergic and glucocorticoid stimulation had no effect on spatial learning and spatial memory retrieval compared with placebo. ConclusionsIn healthy young men, hydrocortisone and/or yohimbine did not alter spatial learning or spatial memory retrieval. Importantly, pharmacological stimulation took place prior to learning. Further studies should examine the effects of glucocorticoid and noradrenergic stimulation during encoding, consolidation, and retrieval.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call