Abstract

Ageing skeletal muscles become both insulin resistant and atrophic. The hormone glucagon-like peptide 1 (GLP-1) facilitates postprandial glucose uptake as well as augmenting muscle perfusion, independent of insulin action. We thus hypothesized exogenous GLP-1 infusions would enhance muscle perfusion and positively affect glucose metabolism during fed-state clamps in older people. Eight men (71 ± 1 years) were studied in a randomized crossover trial. Basal blood samples were taken before postprandial (fed-state) insulin and glucose clamps, accompanied by amino acid infusions, for 3 hours. Reflecting this, following insertions of peripheral and femoral vessels cannulae and baseline measurements, peripheral IV infusions of octreotide, insulin (Actrapid), 20% glucose, and mixed amino acids; Vamin 14-EF with or without a femoral arterial GLP-1 infusion were started. GLP-1, insulin, and C-peptide were measured by ELISA. Muscle microvascular blood flow was assessed via contrast enhanced ultrasound. Whole-body glucose handling was assayed by assessing glucose infusion rate parameters. Skeletal muscle microvascular blood flow significantly increased in response to GLP-1 vs feeding alone (5.0 ± 2.1 vs 1.9 ± 0.7 fold-change from basal, respectively; P = 0.008), while also increasing whole-body glucose uptake (area under the curve 16.9 ± 1.7 vs 11.4 ± 1.8 mg/kg-1/180 minutes-1, P = 0.02 ± GLP, respectively). The beneficial effects of GLP-1 on whole-body glycemic control are evident with insulin clamped at fed-state levels. GLP-1 further enhances the effects of insulin on whole-body glucose uptake in older men, underlining its role as a therapeutic target. The effects of GLP-1 in enhancing microvascular flow likely also affects other glucose-regulatory organs, reflected by greater whole-body glucose uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call