Abstract
A model is constructed to study the phenomenon of bursting in cultured neuronal networks by considering the effects of glial release and the extrasynaptic receptors on neurons. In the frequently observed situations of synchronized bursting, the whole neuronal network can be described by a mean-field model. In this model, the dynamics of the synchronized network in the presence of glia is represented by an effective two-compartment neuron with stimulations on both the dendrite and soma. Numerical simulations of this model show that most of the experimental observations in bursting, in particular the high plateau and the slow repolarization, can be reproduced. Our findings suggest that the effects of glia release and extrasynaptic receptors, which are usually neglected in neuronal models, can become important in intense network activities. Furthermore, simulations of the model are also performed for the case of glia-suppressed cultures to compare with recent experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.