Abstract

In this work, CdO–Bi2O3–PbO–ZnO–Al2O3–B2O3–SiO2 low softening point glass powders were prepared and employed as sintering aid to improve the dielectric breakdown strength and reduce the sintering temperature of Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 antiferroelectric ceramics. The effects of glass content and sintering temperature on the densification, microstructure, dielectric properties and energy storage performance of Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 antiferroelectric ceramics have been investigated. With inclusion of glass, sintered densities comparable to those obtained by conventional sintering are achieved at only 1,050 °C. The breakdown strength of glass-added samples was notably improved due to the reduction of the grain size. The antiferroelectric to ferroelectric switching field and the ferroelectric to antiferroelectric field both increased with increasing glass content. The dielectric constant and dielectric loss decreased gradually with increasing glass content. As a result, the highest recoverable energy density of 3.3 J/cm3 with an energy efficiency of 80 % was achieved in 4 wt% glass-added sample sintered at 1,130 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call