Abstract

While in the standard cosmological model the accelerated expansion of the Universe is explained by invoking the presence of the cosmological constant term, it is still unclear the true origin of this stunning observational fact. It is therefore interesting to explore alternatives to the simplest scenario, in particular by assuming a more general framework where the fluid responsible of the accelerated expansion is characterised by a time-dependant equation of state. Usually these models, dubbed dark energy models, are purely phenomenological, but in this work we concentrate on a theoretically justified model, the ghost dark energy model. Within the framework of the spherical collapse model, we evaluate effects of dark energy perturbations both at the linear and non-linear level and transfer these results into an observable quantity, the mass function, by speculatively taking into account contributions of dark energy to the mass of the halos. We showed that the growth rate is higher in ghost models and that perturbations enhance the number of structures with respect to the $\Lambda$CDM model, with stronger effects when the total mass takes into account dark energy clumps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call