Abstract

Characteristics of phenanthrene and pyrene’s sorption and desorption on two local soils in solutions of simulated groundwater, simulated lung fluid, and simulated saliva were studied with batch equilibrium experiments to understand the fate of PAHs in the karst region of southwestern China and to assess the environmental exposure and the health risk of PAHs. The results showed that the sorption and desorption isotherms of phenanthrene and pyrene on two target soils in the three solution systems could be adequately described by the Freundlich model, while the fitted isotherm parameters for the simulated groundwater solution distinguished notably from those for the simulated body fluid solutions. For the sorption experiments, in the simulated groundwater, the n values were 0.722 and 0.672 for phenanthrene and were 0.724 and 0.663 for pyrene, respectively, on the yellow soil and the limestone soil; The log KF values were 3.118 and 3.323 for phenanthrene and were 3.648 and 3.846 for pyrene, respectively, on the yellow soil and the limestone soil. In the simulated body fluids, the n values for phenanthrene and pyrene ranged from 0.622 to 0.836 and from 0.590 to 0.865, respectively, and the log KF values of phenanthrene and pyrene ranged from 2.845 to 3.327 and from 3.344 to 3.779, respectively. For the desorption experiments, in the simulated groundwater, the n values were 0.662 and 0.744 for phenanthrene and were 0.702 and 0.647 for pyrene, respectively, on the yellow soil and the limestone soil. The log KF values were 3.666 and 3.686 for phenanthrene and were 4.128 and 4.225 for pyrene, respectively, on the yellow soil and the limestone soil. In the simulated body fluids, the n values for phenanthrene and pyrene ranged from 0.612 to 0.668 and from 0.631 to 0.819, respectively, and the log KF values of phenanthrene and pyrene ranged from 3.134 to 3.407 and from 3.533 to 3.839, respectively. The limestone soil had relatively higher log KF values but lower KOC values compared to those of the yellow soil, indicated that the nature of sorbent soils played the dominant role in sorption and desorption behaviors of PAHs. The experimental results showed a remarkable differences in sorption and desorption behaviors of PAHs in simulated body fluids and groundwater. The nonlinearities of measured isotherms and the measured sorption capacities of soils in simulated body fluids were significantly lower than corresponding those in the simulated groundwater, and HI values for simulated body fluids systems were significantly smaller than corresponding those for the simulated groundwater systems. The results underscore cautions in assessing environmental exposure and health risks of PAHs based on their sorption–desorption data in simulated groundwater as this is traditionally done.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call