Abstract
We study the dynamical (three-dimensional box, axisymmetric and spherical shell geometry) and parameterized models of the mantle convection with the core-cooling. The viscosity is constant in space and dependent on the volume averaged mantle temperature. Core is treated as a hot bath. To understand the process of cooling, we use the ‘local’ Rayleigh (Ral ) and Nusselt (Nul) numbers, which are defined in each thermal boundary layer. In the dynamical calculations, we check the various combinations of Ral and Nul, and find that the local Rayleigh number either at the top or bottom surface may control both the top and bottom local Nusselt numbers. This result suggests that the core-cooling in this case may be controlled by the flow either at top or bottom boundary layer. The least-square-fitting of Nul-Ral relationship shows that its power-law index is around 0.3, despite of the different geometry. Comparing the thermal history calculated by the dynamical and parameterized models, we find that the parameterized convection theory based on the local Ra-Nu relationship obtained by the dynamical calculation is useful for investigating the thermal history of the mantle and core. Applying the parameterized theory to the Earth, we find that the plausible Urey ratio is smaller than that obtained by the previous works which ignored the bottom thermal boundary layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.