Abstract

This paper investigated the effect of geometry and fraction of polypropylene (PP) fiber and the induced microcracks on permeability of ultra-high performance concrete (UHPC) subjected to elevated temperature. Residual permeability and microcrack networks of fifteen UHPC mixes were characterized and an analytical model correlating residual permeability of UHPC with fiber fraction and geometry was proposed. Results showed that increasing fiber length and dosage had much stronger effect than increasing fiber diameter on enhancing permeability due to greater enhancement on percolation of fiber tunnels. It was found that permeability of UHPC is positively correlated with both the aspect ratio and dosage of PP fibers. However, at low fiber aspect ratio, increased fiber dosage does not increase the permeability of UHPC. Similarly, at low fiber dosage, solely increasing fiber aspect ratio does not contribute much to increasing permeability of UHPC. The proposed model thus provides insight for PP fiber selection and optimization to prevent explosive spalling of concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.