Abstract

Ventilation air heat recovery used in building energy conservation involves simultaneous heat and moisture/mass transfer and is characterized with small temperature and moisture partial pressure differences. It is critical to consider the trade-offs between heat and mass transfer effectiveness and pressure loss. This study is the exploration of using numerical heat transfer analysis for this purpose. Simulations are performed to study the geometric effect on thermohydraulic characteristics of a periodic cross-corrugated channel for the Re range of 200–3000. The effect of Apex angle and aspect ratio on heat transfer, pressure drop and thermohydraulic performance in the corrugated channel is investigated. To accurately predict the transitional flow in the topology, a model performance evaluation is conducted in two steps through the cross comparisons between predictions and related correlations (or experiment results). Of the seven turbulence models selected, the Reynolds stress model fits the correlation and experiment the best and thus is employed for comparative study. The results show that the Apex angle strongly influence the heat transfer and pressure loss in a triangular cross-section corrugated channel. For the purpose of heat transfer enhancement, cross-corrugated triangular channels at the 90° and 120° Apex angles are recommended. The aspect ratio has a relatively greater impact on flow frictional loss, compared to its effect on the heat transfer for the studied cases. For this flow regime, the cross-corrugated triangular duct with the Apex angle of 150° is shown to be the optimum choice over all the studied channels. The JF factor is enhanced by 4.1–7.0 times that in a triangular channel with Apex angle of 90°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.