Abstract

Geometric similarity ratio is one of the important factors that affects the disturbance amplitude of shock-wave front in viscosity measurement. In this paper, the Euler difference scheme of two-dimensional (2D) equations of viscous fluid mechanics is used to simulate the disturbance amplitude damping curves under different geometric similarity ratios, and the corresponding numerical solutions are shown. The samples of aluminum shocked to 80 GPa are taken as an example. The simulation results show that the initial conditions, material viscosity, wavelength, and sample geometric similarity ratio affect the evolution of the shock front sine wave disturbance. For flyer-impact flow field, the phase shift increases from 0 to a certain value with the viscosity coefficient for sample with wavelength [Formula: see text] mm and geometric similarity ratio [Formula: see text], 0.1. So, the geometric similarity method can be used to measure the viscosity of material. But it is found that the phase shift is sensitive to the geometric similarity ratio, which should be considered in Zaidel’s equation. So, some flyer-impact experiments will be carried out to determine the simulation results, and find the quantity relation of phase shift and viscosity of material in the future investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.