Abstract

The effect of different wood flour sizes on strength and dimensional properties of wood-plastic composites were examined. Wood flour of different particle sizes viz; 1.00mm, 2.00mm and >2.00mm were compounded with recycled low-density polyethylene (LDPE) at different wood/plastic ratio of 1: 1, 2: 3 and 3: 2. The results obtained showed that wood flour size > 2.00mm has the highest MOR and MOE values of 1.206N mm-2 and 2484.72Nmm-2 while wood flour size of 1.00mm had the lowest MOR and MOE values of 0.505Nmm-2 and 2195.89Nmm-2 respectively. Also the results of the physical properties showed that wood flour size of 1.00mm had the lowest thickness swelling percentage with mean values of 0.28% and 2.08% while water absorption percentage has mean values of 0.91% and 10.58% after 2 hours and 24 hours of water immersion respectively. It was observed that wood flour size of 2.00mm and particle size >2.00mm had the highest thickness swelling and water absorption percentages. This showed that strength properties of wood plastic composites increased with increased particle sizes whereas its dimensional properties increased with decreased particle sizes. The results of analysis of variance carried out on mechanical and physical properties showed that particle sizes and wood/plastic ratio had a significant effect on the mechanical and physical properties of wood plastic composites (p 0.05).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.