Abstract

Abstract The effects of geometric configurations of corrugated cores on the local impact response and planar compression performance of sandwich panels are presented by FEM in the present research. Five sandwich panels with various corrugated cores of different geometric configurations with the same size, weight, and materials were designed. The next step was to identify the effects of geometric configurations of the cores on the response of the sandwich panels under minor energy impact and high energy impact. Numerical simulation results of low-velocity local impact show that the geometric configuration of the core had a significant influence on energy absorption capability under minor energy impact. Sandwich panels with sinusoidal and arc-shaped cores caused lower energy absorption due to lower out-of-plane stiffness. Significant debonding occurred in the sandwich panels with sinusoidal, arc-shaped and triangular cores due to a small bonding area. Geometric configuration of the cores has no significant influence on energy absorption capability under high energy impact. Afterwards, the influence of the geometric configuration of corrugated cores on the performance of sandwich panels under planar compression was presented. Numerical results of planar compression show that sandwich panels with sinusoidal and arc-shaped cores have lower compression stiffnesses and lower ultimate strengths. A simplified analytical method for calculating ultimate strength of the five sandwich panels under lateral compression was presented, and the results matches well with the numerical results. Altogether, the trapezoidal corrugated sandwich panel has advantage in energy absorption capability under low-velocity impact and has a better performance under lateral compression among the five kinds of sandwich panels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call