Abstract

In this study, it was aimed to find out geodesic dome trajectories of composite overwrapped pressure vessels, and investigate the effect of dome profiles on the structural performances. In this context, geodesic paths for 0.2, 0.3, 0.4, 0.5 and 0.6 dimensionless polar opening radii were determined by solving elliptical integrals and filament winding angles were calculated throughout the dome and cylindrical portions. Afterward, finite element analysis was performed to obtain mechanical properties by using the Ansys ACP module. As a result of the current study, it has been concluded that dome profile and filament winding angle are highly dependent on the polar opening radii. When the performance factor was considered, it has been determined that the optimum pressure vessel has 0.6 dimensionless polar opening radii. Moreover, it was observed that minimum equivalent stress, strain, deformation and inverse reverse factors have occurred in the pressure vessel with 0.6 dimensionless polar opening radii. Furthermore, it was showed that effective parameters in the mechanical performance of pressure vessels can be optimized to obtain strengthened and lighter structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.