Abstract

This study was performed to compare the effects of three well-known phytoestrogens such as genistein, resveratrol, and quercetin on steroidogenesis in MA-10 mouse tumor Leydig cells. Addition of genistein or resveratrol to MA-10 cells resulted in decreases in the cAMP-stimulated progesterone secretion, but quercetin had an opposite response. Steroidogenic acute regulatory (StAR) mRNA expression and StAR promoter activity in transiently transfected MA-10 cells were significantly reduced by genistein or resveratrol, but increased by quercetin. Genistein was found to inhibit MA-10 cell proliferation, while resveratrol and quercetin had no effect. Quercetin-induced increase in cAMP-stimulated progesterone secretion was reversed by ICI 182,780, an estrogen receptor (ER) antagonist. However, ICI 182,780 had no effect on cAMP plus quercetin-stimulated StAR promoter activity. To examine whether non-ER factors are associated with quercetin-stimulated progesterone production, we treated MA-10 cells with EGTA to deprive them of extracellular Ca(2+). We found that EGTA inhibited quercetin-plus cAMP-stimulated progesterone secretion and StAR promoter activity. Blocking of Ca(2+) influx through L- or T-type voltage-gated Ca(2+) channels with verapamil or mibefradil respectively, attenuated quercetin-stimulated progesterone secretion, while they had no effect on quercetin-plus cAMP-stimulated StAR promoter activity. Blocking of intracellular Ca(2+) efflux by sodium orthovanadate, a Ca(2+)-pump inhibitor, blocked quercetin- plus cAMP-stimulated progesterone secretion and StAR promoter activity in MA-10 cells. Finally, EGTA or vanadate reduced quercetin and cAMP-increased in StAR mRNA expression in MA-10 cells, while ICI 182,780 had no effect. Taken together, these results indicate that phytoestrogens have differential effects on steroidogenesis in MA-10 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.