Abstract

Associations between neurotransmitters, adrenergic receptor (ADR) mutations, and behaviors in chickens produced and domesticated by artificial selection remain unclear. This study investigates the association of neurotransmitters and ADR mutations with egg laying and cockfighting-behaviors associated with significantly different breeding backgrounds-in Shaver Brown and Shamo chickens. Accordingly, the whole sequences of nine ADR genes were determined, and nine amino acid-specific mutation sites from five genes (ADRα1A: S365G, ADRα1D: T440N, ADRα2A: D273E, ADRβ1: N443S, S445N, ADRβ3: R342C, Q404L, and P406S) were extracted. Evolutionary analysis showed that these mutations were not ancestrally derived. These results confirm that the mutations at these sites were artificially selected for domestication and are breed specific. NST population analysis confirmed a difference in the degree of genetic differentiation between the two populations in seven genes. The results further confirm differences in the degree of genetic differentiation between the two populations in Shaver Brown (ADRA1B and ADRA1D) and Shamo (ADRA1A and ADRA2B) chickens, indicating that the ADR gene differs between the two breeds. The effects of artificial selection, guided by the human-driven selection of desirable traits, are reflected in adrenaline gene mutations. Furthermore, certain gene mutations may affect domestication, while others may affect other traits in populations or individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.