Abstract

BackgroundEating and cooking quality have become ever more important breeding goals due to high levels of economic growth in Asia in recent decades. Cooked rice texture properties such as hardness, stickiness, and springiness are appealing to human mastication and directly reflect eating and cooking quality, and texture is strongly affected by genetic background and environmental conditions.ResultsIn this study, a series of recombinant inbred lines (RILs) derived from an indica/japonica cross were planted into four typical rice-cultivated areas. The relationships between the environment, texture, and genetic background of the RILs were investigated. The results showed that hardness, stickiness, and springiness strongly correlated with amylose and protein contents. Texture was strongly affected by environmental factors, which dynamically changed from the heading to the mature stage. Interestingly, the effect of environmental factors became weaker with decreasing latitude. The hardness and stickiness increased with the decrease of latitude, whereas springiness exhibited the opposite trend. The indica pedigree percentage did not significant correlated with hardness, stickiness and springiness. We detected 19 QTLs related to hardness, stickiness, and springiness, several of which share a similar region with a previously reported locus related to starch synthesis. Moreover, we revealed that DEP1 might affect taste through regulating amylopectin chain length distribution.ConclusionsThe present study evaluated the effects of environmental factors and genetic background to texture of cooked rice. These results provide insights into the eating and cooking quality of rice, which can be improved through sub-species crosses for different ecological conditions.

Highlights

  • Eating and cooking quality have become ever more important breeding goals due to high levels of economic growth in Asia in recent decades

  • As living standards and the economy have significantly improved during recent decades, studies have focused on rice (Oryza sativa L.) eating and cooking quality

  • The results showed that R99 was markedly enriched in chain length with DP5-DP14 compare to the R99, and SN265 was enriched in DP15-DP60 compare to the R99 (Fig. 5c)

Read more

Summary

Introduction

Eating and cooking quality have become ever more important breeding goals due to high levels of economic growth in Asia in recent decades. Cooked rice texture properties such as hardness, stickiness, and springiness are appealing to human mastication and directly reflect eating and cooking quality, and texture is strongly affected by genetic background and environmental conditions. As living standards and the economy have significantly improved during recent decades, studies have focused on rice (Oryza sativa L.) eating and cooking quality. The environmental condition strongly affected the traits of cooked rice. It has been well documented that high chalkiness of early season indica is mainly caused by the adverse climatic conditions during grain filling, and high temperature is the most important factor to affect chalkiness. Poor grain quality caused by an increase in nighttime temperatures may lead to extensive reduction in economic benefits (Lyman et al 2013)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.