Abstract

This investigation discusses the effects of first order chemical (generative/destructive) reaction on the transport in a species of variable mass conductance in a Williamson liquid of variable diffusion coefficient. The problem is modeled using conservation laws with temperature dependent variable diffusion coefficients models. Several numerical experiments are carried out to analyze the effects of chemical reaction on the concentration of reacting species. During numerical experiments, it is observed that a constructive chemical reaction increases the concentration of the species, whereas the concentration decreases when the rate of destructive chemical reaction grows. The rate of diffusion of species rises with growth of the mass conductance due to rise in the temperature. The rate of diffusion of solute from a wall into the fluid is a growing function of the mass diffusion coefficient. It is observed that the diffusion of solute in the fluid accelerates when the diffusion coefficient increases due to the rise in temperature. This observation is true for both the cases of constant and variable viscosity. Both generative and destructive chemical reactions have a significant impact on the rate of diffusion of solute from the wall into the fluid. The concentration of solute decreases when the rate of destructive chemical reaction grows. However, opposite behavior of concentration field is noted for the case of generative chemical reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.