Abstract

The effects of anesthetics on the transmission and processing of sensory information within the thalamocortical pathway and the underlying mechanism are not fully understood. Using the extracellular recording technique, we investigated the changes of spontaneous and stimulation-evoked activities within and between the ventral posteromedial nucleus (VPM) and primary somatosensory cortex barrel field (S1BF) of the rat in vivo during propofol anesthesia. Spontaneous local field potentials, whiskers deflection–elicited somatosensory evoked potentials, and multi-unit activities in VPM/S1BF were assessed at different depths of propofol anesthesia. In VPM and S1BF, powers of spontaneous and stimulation-evoked activities, coupled with stimulation-evoked multi-unit, were decreased with increasing of propofol anesthesia. Cortical onset latency increased during intermediate/deep level propofol anesthesia, whereas thalamic onset latencies were not changed even at different depths of anesthesia. In addition, spontaneous and whisker deflectionevoked alpha oscillations were observed during propofol anesthesia, which is similar to sleep spindles, These data suggest that propofol affects processing of sensory information by 1) attenuating respective neuronal activities in VPM and S1BF, 2) delaying the ascending signal transmission from VPM to S1BF, and 3) inducing a natural-sleep type of anesthesia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call