Abstract

Gemfibrozil, a lipid-regulating pharmaceutical, has been widely used for treating dyslipidemia in humans and detected frequently in freshwater environments. Since plasma cholesterol is a precursor of steroid hormones, the use of gemfibrozil may influence the sex hormone balances. However, its endocrine toxicity following long-term exposure is not well understood. The purpose of the present study is to investigate the effects of gemfibrozil on sex hormones and reproductive outcomes in a freshwater fish, following a long-term (155 d) exposure. For this purpose, Japanese medaka embryos (F0) were exposed to a series of gemfibrozil concentrations, i.e., 0, 0.04, 0.4, 3.7, and 40 mg/L for 155 d, and reproductive parameters, sex hormones, and associated gene expressions were assessed. For comparison, a short-term exposure (21 d) was performed separately with adult medaka and measured for sex hormones and related gene expressions. Following the 155 d long-term exposure, the fecundity showed a decreasing pattern. In addition, at 3.7 mg/L gemfibrozil, testosterone (T) level in the female fish was significantly decreased, and the hatchability of F1 fish was significantly decreased. The estrogen receptor (er) or vitellogenin (vtg) genes in gonads and liver were up-regulated. However, plasma cholesterol levels did not show significant changes in both sexes. The observations from the short-term (21 d) exposure were different from those of the long-term exposure. Following the short-term exposure, decreased 17β-estradiol (E2), and 11-ketotestosterone (11-KT) levels along with decrease plasma cholesterol were observed in the male fish. The hormone disruption following the short-term exposure appears to be associated with the hypocholesterolemic activity of gemfibrozil. Our results show that the mechanisms of gemfibrozil toxicity may depend on the exposure duration. Consequences of long-term exposure to other fibrates in the water environment warrant further investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.