Abstract

The activity of 91 neurons in the frontal eye fields (FEFs) of two macaque monkeys was recorded while the animals performed a delayed spatial match-to-sample task. During the delay, the animals were required to shift their gaze to one of four eccentric locations. Neuronal activity during the delay was analyzed for sensitivity to cue location and eye position. One-third of the neurons showed significant delay activity selective for cue location, whereas slightly more than one-half of the neurons showed significant modulation of delay activity when the gaze was shifted to an eccentric location. Despite this modulation, the neurons continued to signal their preferred cue location during most of the delay. However, after recentering saccades, the memory signal was temporarily abolished and then reemerged over a period of few hundred milliseconds. This is consistent with the idea that spatial working memory is buffered outside of the FEF. For most neurons, delay activity tended to increase when the gaze was shifted away from the preferred location and to decrease when the gaze was shifted toward the preferred location. This pattern of modulation is consistent with a vector subtraction mechanism that allows for the superposition of multiple saccade plans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.