Abstract
Low-voltage oxide semiconductors thin-film transistors (TFTs) with ultra-thin dielectrics are gaining attention in wearable electronics. However, it is a challenge for oxide semiconductor TFTs to operate at a low-voltage while maintaining high performance. In this article, ultra-thin Al x O y films (∼3 nm) are grown on aluminum (Al) electrodes with different surface roughness by anodization. The morphology and electrical properties of the anodized Al x O y films are studied. Furthermore, InGaZnO (IGZO) TFTs with the anodized AlxOy dielectrics are fabricated. It is revealed that the rougher Al gate electrode deposition resulted in a higher interface trap density, which lead to the degradation of device performance. Through optimizing the surface roughness of the initial Al gate electrodes that are used for anodization, the IGZO TFTs can operate at 1 V and show desirable properties including a reasonable saturation mobility of 5.5 cm2 V−1s−1, a low threshold voltage of 0.37 V, a small subthreshold swing of 79 mV decade−1, and a high current on-off ratio of over 106. This work shows the potential of using anodization in the future for low-power wearable electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.