Abstract

We investigated the ability of gastric digestive products from casein to stimulate cholecystokinin release by intestinal cells using the isolated vascularly perfused rat duodenojejunum. Casein digests were prepared with an in vitro system simulating gastric digestion and emptying. The luminal infusion of the digesta emptied from the artificial stomach for the first 10 minutes produced a sharp rise of portal cholecystokinin-like immunoreactivity to 300% of basal, followed by a well-sustained plateau secretion until the end of the infusion. The residual casein fraction of this digest brought about a modest cholecystokinin secretion, while the peptide component was as strong a stimulant as total digest. The peptide responsible for this effect was the glycomacropeptide that is a glycosylated fragment (106–169) of κ-casein. Only the slightly glycosylated forms of the peptide originating from variant A of κ-casein were active. The carbohydrate-free peptide did not alter basal cholecystokinin. The highly glycosylated forms of the peptide and the slightly glycosylated peptide from κ-casein variant B induced only a transient and low rise of portal cholecystokinin. The removal of N-acetylneuraminic acid from the active peptide suppressed its effect, while the infusion of an N-acetylneuraminic acid solution induced only a very low response. It is concluded that the glycomacropeptide released from dietary casein during gastric digestion can stimulate cholecystokinin release by intestinal cells in the rat. A well-defined structure is required for the peptide activity. A part of the peptide chain and some glycosidic chains containing N-acetylneuraminic acid, especially those bound to the amino acid residue threonyl 31 of caseinomacropeptide variant A, would be involved in this structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.