Abstract
A computational model of single rabbit sinoatrial (SA) node cells has been revised to fit data on regional variation of rabbit SA node cell oscillation properties. The revised model simulates differences in oscillation frequency, maximum diastolic potential, overshoot potential, and peak upstroke velocity observed in cells from different regions of the node. Dynamic properties of electrically coupled cells, each with different intrinsic oscillation frequency, are studied as a function of coupling conductance. Simulation results demonstrate at least four distinct regimes of behavior as coupling conductance is varied: a) independent oscillation (Gc < 1 pS); b) complex oscillation (1 < or = Gc < 220 pS); c) frequency, but not waveform entrainment (Gc > or = 220 pS); and d) frequency and waveform entrainment (Gc > or = 50 nS). The conductance of single cardiac myocyte gap junction channels is about 50 pS. These simulations therefore show that very few gap junction channels between each cell are required for frequency entrainment. Analyses of large-scale SA node network models implemented on the Connection Machine CM-200 supercomputer indicate that frequency entrainment of large networks is also supported by a small number of gap junction channels between neighboring cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.