Abstract

Control of intracellular calcium concentrations ([Ca2+]i) is essential for neuronal function, and the plasma membrane Ca2+-ATPase (PMCA) is crucial for the maintenance of low [Ca2+]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca2+ homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by d-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca2+ transporter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.