Abstract

The properties of natural rubber foam (NRF) containing gamma-synthesized chitosan (CS) powder were investigated to address the growing demand for efficient methods to treat industrial wastewater contaminated with heavy metals. The CS powder was prepared by irradiating chitin (CT) powder with varying doses of gamma rays (0–100 kGy), followed by deacetylation using 40% sodium hydroxide (NaOH) at 100 °C for 1 h. The resulting CS powders were then mixed with natural rubber latex (NRL) at different contents (0, 3, 6, and 9 parts per hundred parts of rubber by weight; phr) and processed using Dunlop techniques to prepare the foam samples. The experimental findings indicated that the degree of deacetylation (%DD) of the CS powder increased initially with gamma doses up to 60 kGy but then decreased at 80 and 100 kGy. In addition, when the CS powder was incorporated into the NRF samples, there were increases in total surface area, density, compression set, and hardness (shore OO), with increasing gamma doses and CS contents. Furthermore, the determination of heavy metal adsorption properties for Cu, Pb, Zn, and Cd showed that the developed NRF sample exhibited high adsorption capacities. For instance, their removal efficiencies reached 94.9%, 82.5%, 91.4%, and 97.0%, respectively, in NRF containing 9 phr of 60 kGy CS. Notably, all adsorption measurements were determined using 3 cm × 3 cm × 2.5 cm specimens submerged in respective metal solutions, with an initial concentration of 25 mg/L. However, the removal capacity per unit mass of the sample (mg/g) showed less dependencies on CS contents, probably due to the higher density of CS/NRF composites in comparison to pristine NRF, resulting in a smaller volume of the former being submerged in the solution, subsequently suppressing the effects from CS in the adsorption. Lastly, tests on the reusability of the developed NRF indicated that the samples could be reused for up to three cycles, with the Cu removal capacity remaining relatively high (83%) in the sample containing 9 phr of 60 kGy CS. The overall outcomes implied that the developed NRF with the addition of gamma-synthesized CS not only offered effective and eco-friendly heavy metal adsorption capacity to improve public health safety and the environment from industrial wastewater but also promoted greener and safer procedures for the synthesis/modification of similar substances through radiation technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.