Abstract

This review discusses the morphological changes and biological responses of plants irradiated with gamma rays. Seedlings exposed to relatively low doses of gamma rays (1–5 Gy) developed normally, while the growth of plants irradiated with a high dose gamma ray (50 Gy) was significantly inhibited. Based on TEM observations, chloroplasts were extremely sensitive to gamma irradiation compared to other cell organelles, particularly thylakoids being heavily swollen. In addition, some portions of the mitochondria and endoplasmic reticulum were structurally altered, for example, distortion and swelling. The cerium perhydroxide deposition, as a maker for H 2O 2 deposition, was typically manifest on the plasma membranes and cell walls of the tissues from both the control and irradiated plants. However, the intensities of cerium perhydroxide deposits (CPDs) were remarkably increased in the plasma membranes and cell walls of pumpkin tissues such as petiole, cotyledon, hypocotyl and especially leaf after gamma irradiation. These observations are in good agreement with the results of H 2O 2 content in all tissues. The immuno-localization analysis for peroxidase (POD) on the tissues from pumpkin plant showed the same pattern between the control and irradiated plants, but the density of gold particles as indication of POD localization was significantly increased on the cell corner middle lamellae of parenchyma cells, especially in the petiole after gamma irradiation. However, accumulation and localization of H 2O 2 and POD in vessels were not significantly different between both plants. The accumulation and localization of both H 2O 2 and POD were differentially affected by gamma irradiation depending on the different tissue types. The deposition of both H 2O 2 and POD in parenchyma cells appeared much higher than in vessels, suggesting that the former is more sensitive than the latter against gamma rays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.