Abstract
BackgroundMost research on galacto-oligosaccharides (GOS) has mainly focused on their prebiotic effects on the hindgut, but their beneficial effects on the small intestine (SI) have received little attention. Since jejunum is the important place to digest and absorb nutrients efficiently, optimal maturation of the jejunum is necessary for maintaining the high growth rate in the neonate. Therefore, this study investigates the effect of the early intervention with GOS on the intestinal development of the jejunum.MethodsA total of 6 litters of neonatal piglets (10 piglets per litter; Duroc × Landrace × Large White) with an average birth weight of 1.55 ± 0.05 kg received 1 of 2 treatments based on their assignment to either the control (CON) group or the GOS (GOS) group in each litter. Piglets in the GOS group were orally administrated 10 mL of a GOS solution (reaching 1 g GOS/kg body weight) per day from the age of 1 to 7 d; the piglets in the CON group were treated with the same dose of physiological saline. All piglets were weaned on d 21. On d 8 and 21 of the experimental trial, 1 pig per group from each of the 6 litters was euthanized.ResultsThe early intervention with GOS increased the average daily gains in the third week (P < 0.05). Decreased crypt depth was also observed in the jejunum of the piglets on d 21 (P < 0.05). The early intervention with GOS increased the jejunal lactase activity on d 8, maltase activity and sucrase activity on d 21 (P < 0.05). In addition, the early intervention with GOS also facilitated the mRNA expression of Sodium glucose co-transporter 1 (SGLT1) on d 8 and the mRNA expression of Glucose transporter type 2 (GLUT2) on d 21 (P < 0.05). It was further determined that GOS up-regulated the mRNA expression of preproglucagon (GCG), insulin-like growth factor 1 (IGF-1), insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor (EGF). GOS also up-regulated the protein expression of glucagon-like peptide-2 (GLP-2) and EGF in the jejunum of the piglets. Furthermore, it was also found that GOS enhanced the protein expression of ZO-1 and occludin on d 8 (P < 0.05), as well as increased the mRNA expression of TGF-β and decrease the mRNA expression of IL-12 (P < 0.05).ConclusionsThese results indicate that GOS have a positive effect on piglet growth performance in addition to decreasing the crypt depth and enhancing functional development in jejunum of suckling piglets.
Highlights
Most research on galacto-oligosaccharides (GOS) has mainly focused on their prebiotic effects on the hindgut, but their beneficial effects on the small intestine (SI) have received little attention
We hypothesized that early intervention with GOS could increase the growth performance and improve the intestinal development of suckling piglets
Piglets fed with diets containing GOS showed higher BW than those fed with no GOS on d 21, but the difference was not significant
Summary
Most research on galacto-oligosaccharides (GOS) has mainly focused on their prebiotic effects on the hindgut, but their beneficial effects on the small intestine (SI) have received little attention. The jejunum is an important part of the intestine in which the efficient digestion and absorption of nutrients take place, and the maturation of the jejunum is beneficial for maintaining a high rate of growth among neonates [2, 3]. Previous studies have shown that GOS could promote the growth of beneficial bacteria and improve host health in vitro and in vivo [10,11,12]. The promotion of intestinal development and the enhancement of intestinal barrier properties by GOS have been described mainly in vitro using cell models such as the human Caco-2 cell line and rodent models [13, 14]; very little has been shown about the effects on suckling piglets in vivo. It is essential to explore the effect of early intervention with GOS on the jejunal development of suckling piglets
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.