Abstract

Neuropathic pain is the most difficult pain to manage in the pain clinic, and sleep problems are common among patients with chronic pain including neuropathic pain. In the present study, we tried to visualize the intensity of pain by assessing neuronal activity and investigated sleep disturbance under a neuropathic pain-like state in mice using functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG)/electromyogram (EMG), respectively. Furthermore, we investigated the effect of gabapentin (GBP) on these phenomena. In a model of neuropathic pain, sciatic nerve ligation caused a marked decrease in the latency of paw withdrawal in response to a thermal stimulus only on the ipsilateral side. Under this condition, fMRI showed that sciatic nerve ligation produced a significant increase in the blood oxygenation level-dependent (BOLD) signal intensity in the pain matrix, which was significantly decreased 2 h after the i.p. injection of GBP. Based on the results of an EEG/EMG analysis, sciatic nerve-ligated animals showed a statistically significant increase in wakefulness and a decrease in non-rapid eye movement (NREM) sleep during the light phase, and the sleep disturbance was almost completely alleviated by a higher dose of GBP in nerve-ligated mice. These findings suggest that neuropathic pain associated with sleep disturbance can be objectively assessed by fMRI and EEG/EMG analysis in animal models. Furthermore, GBP may improve the quality of sleep as well as control pain in patients with neuropathic pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call