Abstract

Direct and indirect effects of the fungicide chlorothalonil on aquatic plankton community structure were investigated by exposing plankton to chlorothalonil concentrations of 0.010, 0.025, 0.100, 0.250 and 1.000mg/L over 20days in 18 microcosms (glass tanks having 8 L of pond water). Each treatment was executed in three replicates. Total phytoplankton and zooplankton abundance and chlorophyll-a concentrations in microcosms were measured 5, 10 and 20days after pesticide exposure. Plankton community and taxa response to pesticide concentrations were analyzed using the similarity of percentages procedure (SIMPER) and one-way ANOVA test. The results of the study indicated that highest concentration levels of chlorothalonil exposure had a significant impact on phytoplankton and zooplankton taxa. Phytoplankton taxa Amphora sp. and Staurastrum sp. and zooplankton taxa Moina sp. and copepod Nauplius were highly sensitive to chlorothalonil exposure. Phytoplankton taxa Mougeotia sp. increased with increased chlorothalonil (0.1-1.0mg/L) concentrations, and zooplankton taxa of Aeolosoma sp. showed no significant reduction of individuals in response to pesticide exposure. Results showed that pesticide residues have a direct and rapid impact on phytoplankton and zooplankton community structure. Changes in diversity and species composition induced by pesticides indicate the importance of considering indirect effects of pesticides on the ecological food chain in the aquatic environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call