Abstract

Determining the reliability of nanofiltration (NF) membranes for the removal of contaminants of emerging concern, including polyfluoroalkyl substances (PFASs), pharmaceuticals, and personal care products (PPCPs), is important for ensuring drinking water safety. This study aimed to clarify the factors that influence the removal of nine major PFASs during submerged NF treatment via extrapolation based on the factors that influence PPCP removal. The rejection of nine PFASs in ultra-filtered dam water by a polypiperazine-amide (NF270) membrane increased from 71 % to 94 % at a low permeate flux of 5 L/m2 h as the PFAS molecular dimensions increased. PFASs with a carboxylic acid (-CO2H) were rejected to a greater extent than PFASs with a sulfo group (-SO3H). Further, negatively charged PFASs or PPCPs were rejected to a greater extent than uncharged and positively charged PPCPs. Our findings suggest that the rejection of PFASs can vary because of the (i) clearance distance between the PFASs’ molecular dimensions and NF membrane pore diameter and (ii) intensity of electrostatic repulsion between the PFASs’ functional groups and NF membrane surface. Our study indicates that submerged NF can achieve high PFAS rejection; however, variations in rejection among PFASs can become more prominent owing to a low permeate flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.