Abstract

The electrochemical behaviour and thermal stability of functional electrolyte additives for Li-ion batteries is investigated. The Li-ion cell systems is comprised of an anode of mesocarbon microbeads (MCMB) and a cathode (LiCoO 2) in a solution of 1.1 M LiPF 6 dissolved in ethylene carbonate and ethylmethyl carbonate (EC:EMC; 4:6, v/v). Vinyl acetate (VA) and vinylene carbonate (VC) in an ionic electrolyte containing triphenylphosphate (TPP) are tested as functional electrolyte additives. The main analysis tools used in this study are cyclic voltammetry (CV), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Cells containing VA or VC exhibit excellent irreversible capacity, coulombic efficiency, rate capability and cycleability. These features confirming the effectiveness of VC addition for improving both the cell performance and the thermal stability of electrolytes in TPP-containing solutions for Li-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.