Abstract

BackgroundIn rumen fermentation, fumaric acid (FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent. This study aimed to explore the effects of FA supplementation on methanogenesis and rumen fermentation in goats fed diets varying in forage and concentrate particle size.MethodsFour rumen-cannulated goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments: low or high ratio of forage particle size: concentrate particle size (Fps:Cps), without or with FA supplementation (24 g/d). Fps:Cps was higher in the diet with chopped alfalfa hay plus ground corn than in that with ground alfalfa hay plus crushed corn.ResultsBoth increasing dietary Fps:Cps and FA supplementation shifted ruminal volatile fatty acid (VFA) patterns toward more propionate and less acetate in goats. An interaction between dietary Fps:Cps and FA supplementation was observed for the ratio of acetate to propionate (A:P), which was more predominant when FA was supplemented in the low-Fps:Cps diet. Methane production was reduced by FA, and the reduction was larger in the low-Fps:Cps diet (31.72%) than in the high-Fps:Cps diet (17.91%). Fumaric acid decreased ruminal total VFA concentration and increased ruminal pH. No difference was found in ruminal DM degradation of concentrate or alfalfa hay by dietary Fps:Cps or FA. Goats presented a lower ruminal methanogen abundance with FA supplementation and a higher B. fibrisolvens abundance with high dietary Fps:Cps.ConclusionsAdjusting dietary Fps:Cps is an alternative dietary model for studying diet-dependent effects without changing dietary chemical composition. Fumaric acid supplementation in the low-Fps:Cps diet showed greater responses in methane mitigation and propionate increase.

Highlights

  • In rumen fermentation, fumaric acid (FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent

  • Considering that balancing diets for physically effective Neutral detergent fiber (NDF) and rumen degradable starch (RDS) is a key to maintaining proper ruminal pH [19,20,21] and that improper ruminal pH can suppress ruminal degradation kinetics [20,21,22], a long particle size of alfalfa hay was used in a diet with a small particle size of corn in this study

  • The objective of this study was to investigate the effects of FA supplementation on CH4 production, ruminal fermentation, bacterial flora, and in situ feed degradation in goats that were fed diets that varied in forage and concentrate particle size

Read more

Summary

Introduction

Fumaric acid (FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent. This study aimed to explore the effects of FA supplementation on methanogenesis and rumen fermentation in goats fed diets varying in forage and concentrate particle size. Adjusting the particle size of dietary forage and concentrate can influence their ruminal degradation kinetics due to changing surface area available for rumen microbes and enzymes [13,14,15,16], and subsequent alterations in rumen fermentation characteristics [15,16,17,18]; this way allows dietary effects to be investigated without changing chemical composition. The objective of this study was to investigate the effects of FA supplementation on CH4 production, ruminal fermentation, bacterial flora, and in situ feed degradation in goats that were fed diets that varied in forage and concentrate particle size

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call