Abstract

To investigate the effects of Fufang Jiangzhi No. 3, a compound traditional Chinese herbal medicine, on cholesterol-bile acid metabolism in rabbits with hypercholesterolemia and to explore the mechanism. Twenty-four male New Zealand white rabbits were randomly assigned into normal control group, untreated group and Fufang Jiangzhi No. 3 group, with 8 rabbits in each group. Rabbits in the untreated group and Fufang Jiangzhi No. 3 group were fed high cholesterol diet to induce hypercholesterolemia. After 4-week treatment, serum total cholesterol and bile acid contents were assessed. Activity of cholesterol 7alpha-hydroxylase (CYP7A1) in liver tissues was measured by enzyme-linked immunosorbent assay. The expressions of CYP7A1, bile salt export pump (BSEP) and small heterodimer partner (SHP) mRNAs in liver tissues were observed by real-time fluorescent quantitative polymerase chain reaction. Compared with the normal control group, serum total cholesterol and bile acid contents in the untreated group were increased (P<0.01). Activity of CYP7A1 and expression of CYP7A1 mRNA were decreased and expressions of BSEP and SHP mRNAs were increased in liver tissues in the untreated group as compared with the normal control group (P<0.01). Serum total cholesterol level, and expressions of BSEP and SHP mRNAs in the Fufang Jiangzhi No. 3 group were lower than those in the untreated group (P<0.01). The CYP7A1 activity and expression of CYP7A1 mRNA in the Fufang Jiangzhi No. 3 group were increased as compared with the untreated group (P<0.01), however, there was no significant difference in bile acid between the Fufang Jiangzhi No. 3 group and the untreated group. Fufang Jiangzhi No. 3 can up-regulate the expression of CYP7A1 mRNA, raise the activity of CYP7A1, and inhibit the expressions of BSEP and SHP mRNAs to regulate the metabolism of total cholesterol in rabbits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.